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A systematic procedure is described which uses two-and three-fold symmetry 
elements in graphs to reduce their adjacency matrices to lead to corresponding 
factorings of their characteristic polynomials. A graph splitting algorithm based 
on this matrix reduction procedure is described. Applications of these methods to 
the factoring of the characteristic polynomials of 28 polyhedra with nine or less 
vertices are given. General expressions for the eigenvalues of prisms, pyramids, 
and bipyramids in terms of the eigenvalues of their basal or equatorial regular 
polygons are calculated by closely related matrix methods. 
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1. Introduction 

A fundamental understanding of the properties of three-dimensional polyhedra is 
important for structural chemistry. The spectra of such polyhedra as determined by 
solutions of the characteristic equations of their adjacency matrices [1 ] are related 
to interactions between atoms located at the vertices of the polyhedra and therefore 
are essential to the understanding of chemical systems. During the past several years 
I have investigated the properties of chemically significant polyhedra [2-6]. More 
recently, I have studied their eigenvalue patterns in attempts to relate these patterns 
to the energies of available atomic orbitals. During the course of this more recent 
work I have developed efficient and systematic procedures for using elements of 
symmetry in graphs for factoring their characteristic equations thereby facilitating 
determination of their eigenvalues and providing insight into effects of certain 
structural changes in certain graphs on their eigenvalue patterns. These new pro- 
cedures thus provide a simple method for deriving general expressions for the eigen- 
values of certain common families of polyhedra such as prisms, pyramids, and 
bipyramids. 

This expository paper summarizes the highlights of these new matrix reduction and 
graph splitting procedures and illustrates their applications for the determination of 
characteristic equations of polyhedra with some symmetry but insufficient symmetry 
for many of the more powerful techniques of algebraic graph theory [1 ]. This paper 
first justifies these new techniques in terms of standard matrix theory [7, 8]. It then 
presents details of the corresponding graph splitting algorithm, which uses symmetry 
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elements to convert a connected graph G with v vertices to a disconnected graph G* 
also with v vertices but with c components G1,. �9 Gc such that the eigenvalues of  
G* are the same as those of  G. However, whereas determination of the eigenvalues 
of  G requires solution of an equatiofi of  order v, determination of  the equivalent 
eigenvalues of G* requires solution of  equations of  a lower degree u where u is the 
number of  vertices in the largest component of  G*. Even if G is the usual type of 
graph with all edges of  unit weight in both directions, the corresponding graph G* 
arising from this graph reduction algorithm will have edges of  variable and non-unit 
weights, different weights in each direction, and/or loops. However, the complications 
added by introduction of  these features into G* from G are far less than the simplifi- 
cations in the expansion of  the adjacency matrix into the characteristic polynomial 
and the reduction of  the maximum degree of  the equations that must be solved to 
obtain the eigenvalues. 

2. A Matrix Description of  the Procedure 

Consider graph G containing v vertices with a two-fold symmetry element s 2 such that 
for the corresponding symmetry operation s~ = E where E is the identity. Label as 
Zl, �9 �9 zp the p vertices of G that are fixed under the symmetry operation s2 (i.e. 
s2(zi) = zi). Label as al . . . .  , aq the q vertices of  G that transform under s2 to 
b 1,. �9 bq, respectively. Then p + 2q = v. Furthermore, any pair ai, bi is in the same 
orbit of  the symmetry operation s2. Consider the adjacency matrix A(G) as formed 
by the following 9 submatrices: 

AZ, z Az,!,a, Az, b~ 

Aa, z Aa, a Aa, b ~ 

b,z Ab,a ab, b/ .  

If  a similarity transformation p-1 AP on A(G) can be found such that the submatrices 
in the positions ofAb, z and Ab,a, the positions of  Az, b and Aa, b, or other adjacent 
non-diagonal positions become zero, then the problem of determining the eigenvalues 
of  the v x v matrix A can be reduced to the simpler problem of determining the eigen- 
values of  one (p + q) x (p + q) matrix and one q x q matrix where p + 2q = v. 

Consider the following sequence of  two steps: 
1) Add to each column of  A corresponding to the vertex a i the column corresponding 

to the vertex b i in the same orbit of s 2 thereby leadingto a new v x v matrix A '  
which can be represented as 

Az, z Az,a + Az, b Az, b~ 

aa,z Aa, a + aa, b aa, bJ 

Ab,z Ab,a + Ab, t, At,,b]. 
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2) In the new matrix A subtract from each row corresponding to the vertex bi the row 
corresponding to the vertex a i in the same orbit of  s 2 leading to a third v x v matrix 
A" which can be represented as 

Aa, z Aa, a + Aa, b Aa, b 

Ab,z - Aa, z Ab,a + Ab, b -- Aa, a -- Aa, b Ab,b -- Aa, b 

Step 1 above generates columns corresponding to each orbit of  graph G under sym- 
metry operation s2 (i.e. the columns of  the types Ax,z  and Ax, a + Ax,b where x is 
z, a, or b). Step 2 involves taking the differences between pairs of  rows corresponding 
to pairs of  vertices in the same orbit. However, pairs of  vertices ai, bi in the same 
orbit of  G under s 2 will be equivalently situated with respect to all of  the other 
orbits of  G under s2 regardless o f  whether such orbits contain one vertex (i.e. zj) or 
two vertices (i.e. a], bi). For this reason clearly related to the presence of  the sym- 
metry element s 2 in G, the submatrices Ab,z - Aa, z and Aa, a + Ab, b -- Aa,a - Aa, b 
will be zero indicating that A" has the form 

Az, z Az, a + Az, b Az, b ) 

Oa, z Aa,a + Aa, b Aa, b 

0 Ab, b - A a ,  b . 

Consider the two v x v matrices P and Q such that AP = A '  and QA' = A".  If  Q = p - l ,  
then A"  = p-1 AP  and the two steps indicated above constitute a similarity trans- 
formation such that det (M - A )  = det ( X / -  A") thereby indicating that the eigen- 
values of  A are identical to those of  A". More significantly, the location of  the zero 
submatrices in A"  means that the eigenvalues of A"  will be identical to the eigen- 
values of  the smaller matrices 1 

Az,z Az, a + Az, b ) 

Aa, z Aa a + Aa,b and (Ab,b - Aa,~). 

For convenience and future reference label these submatrices Ag and Au respectively. 
Note that Ag is a (p + q) x (p + q) matrix and Au is a q x q matrix. 

The nature o f  step 1 means that P has the following form: 
a) Pxx = +1 (diagonal elements); 
b) Pxy = +1 and Pyx = 0 i fx  is the row corresponding to any vertex b i and y is the 

column corresponding to the vertex ai(a i and bi are in the same orbit under s2); 
c) all other Pmn = O. 

The nature o f  step 2 means that Q has the following form: 
a) qxx = +1 (diagonal elements); 
b )  qxy  = --1 and qyx  = 0 i fx  is the row corresponding to any vertex bi and y is the 

column corresponding to the vertex ai(a i and b i a r e  in the same orbit under s2); 
c) all other qmn = O. 

1 
See Theorem 1, page 109 in [7] regarding a similar property in closely related triangular matrices. 
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The matrices P and Q are both unit lower triangular matrices. The non-diagonal 
entries of  +1 in P are in identical positions to the corresponding non-diagonal entries 
o f - 1  in Q. Therefore by the standard rules of  matrix multiplication PQ = ! and 

Q = p - l .  Note that the appearance of  the off-diagonal +1 entries in P in the same 
places as the off-diagonal - 1  entries in Q is a strict requirement for PQ = I and 
therefore for equivalence of  the eigenvalues o f  A "  and A. 

A variation of  this type of  procedure can be used for three-fold symmetry elements. 
Consider a graph G with a three-fold symmetry element s 3 such that for the corres- 
ponding symmetry operation s] = E (i.e. a three-fold rotation axis). Label as z 1, �9 �9 zp 

the p vertices that are fixed under s 3 (i.e. lie on the three-fold rotation axis so that 
s3(zi) = zi).  Label as al ,  �9 �9 aq, b l  . . . . .  bq,  and c 1 . . . . .  cq the three sets o f q  vertices 
of  G such that s3(ai) = b i and s~(ai) = ci for 1 ~< i ~< q. Thus p + 3q = v and the vertices 
of  any triplet ai, bi, c i (1 ~< i ~< q) are in the same orbit of  the symmetry operation s 3. 

Consider the adjacency matrix A ( G )  as formed by the following 16 submatrices: 

~A 
Z,Z Az ,a  Az ,  b A z , c ~  

a,z Aa,a Aa, b Aa, c I 
I 

~A ~,Z Al, ,a Ab ,b  A t e , c ]  

c,z Ac,  a Ac,  b Ac,  c / .  

Consider the following sequence of  two steps analogous to those for the two-fold 
symmetry element s 2 discussed above: 

1) Add to each column corresponding to the vertex a i the columns corresponding to 
the vertices bi and ci in the same orbit leading to a new v x v matrix A '  which 
can be represented as 

l 
Az,  z Az ,a  +Az ,b  + A z , c  Az ,b  Az,  c~ 

Aa,z  Aa,a + Aa, b + Aa, c Aa,b Aa, 

Ab , z  Ab,a  +Ab ,b  + A b , c  Ab ,b  A b , :  ] 

/.  Ac, z Ac,  a + Ac,  b + Ac,  c Ac,  b Ac,  c 

2) In the new matrix A '  subtract from :each row corresponding to the vertices bi and 
ci the row corresponding to the vertex a i in the same orbit leading to a third v x v 
matrix A" which can be represented as 

I! 
z,z Az ,a  + Az,  b + Az,  c Az ,  b 

a,z Aa, a + Aa,b + Aa, c Aa, b 

b,z - Aa, z Ab,a  + Ab, b + Ab ,c  - Aa,a - Aa, b - Aa, c Ab ,b  -- Aa, b 

c,z - Aa,z  Ac ,  a + Ac,  b + Ac,  c - Aa, a -- Aa, b - Aa, c Ac,  b - Aa, b 

However, the submatrices (Ab,z  - Aa, z), (Ab,a + Ab ,b  + Ab,  c - A a , a  - A a ,  b .... Aa ,  c) ,  

(Ac, z - Aa, z), and (Ac, a + Ac,  b + Ac,  c - Aa, a - Aa, b - Aa, c) will all be zero since 
they arise from differences between rows corresponding to vertices in the same orbit 

A z ,  c 

Aa, c 

Ab ,c  - Aa, c 

Ac, c - A a ,  c 
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of  G ~ander sa. Also the nature of  the three-fold symmetry element will make any b i 
and a i situated equivalently relative to the corresponding ci and any ci and a i situated 
equivalently relative to the corresponding b i thereby making zero the submatrices 
(Ac, b - Aa, b) and (Ab,c - Aa,c). Therefore A" has the form 

ll 
z, z Az, a + Az, b + Az, c Az, b Az,c c l  

a,z Aa,a + Aa, b + Aa, c Aa, b Aa,c 

0 Ab,~, - A a ,  a 0 

0 0 Ac, c - A a ,  

This makes the eigenvalues of A" identical to the eigenvalues of  the smaller matrices 

Az, a +az ,  b +Az, c I (Ab,b --Aa, b) =Ael  

A;',~ Aa, a+Aa,  b + A a c ]  =Aa (Ac, c - A a ,  c )=Ae2  

again considerably simplifying the eigenvalue calculation problem. 

In this case the eigenvalue calculation can be simplified still further. The nature of  the 
three-fold symmetry operation s a on the graph G requires that b i and c i be equivalently 
situated relative to ai. Therefore just as (Ac, b - Aa, b ) = (Ab,c - Aa, c) = 0 as discussed 
above so does also (Ab, b - Aa, b) = Ael  = (Ac, c - Aa,c) = Ae2 = Ae.  Thus the eigen- 
values of A"  can be obtained from the eigenvalues of  the two submatrices Aa and Ae 
with each eigenvalue of Ae appearing twice as an eigenvalue o fA " .  Eigenvalues of Ae 
of multiplicity m will have multiplicity 2m as eigenvalues o f  A". 

It remains to be shown that the sequence of  two steps outlined above for a graph G 
containing a three-fold symmetry element s a leading from the adjacency matrix A 
to A"  constitutes a similarity transformation such that the eigenvalues of  A" are the 
same as those o f  A. Consider the two v x v matrices P and Q such that AP  = A '  and 
QA' = A".  The nature of  step 1 means that P has the following form: 

a) Pxx = +1 (diagonal elements); 
b) Pxy = +1 and Pyx = 0 i f y  is the column corresponding to any vertex a i and x is the 

row corresponding to the vertices b i or ci where ai, bi, and ci are all in the same 
orbit under the three-fold symmetry operation s a ; 

c) all other Pmn = O. 

The nature of  step 2 means that Q has the following form: 

a) qxx = +1 (diagonal elements); 
b) qxy = - 1  and qyx = 0 i f y  is the column corresponding to any vertex ai and x is the 

row corresponding to the vertices b i or. c i where ai, bl, and ci are all in the same 
orbit under the three-fold symmetry operation s 3 ; 

c) all other qmn = 0. 

Again P and Q are both unit lower triangular matrices. The non-diagonal entries of  
+1 in P are in identical positions to the corresponding non-diagonal entries o f - 1  
in Q. Therefore PQ = I and Q = p-1.  This indicates that the two-step sequence above 
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for the three-fold symmetry element s 3 constitutes a similarity transformation such 
that the eigenvalues of A" are the same as those of A. 

If  the graph G has several two- or three-fold symmetry elements then the procedures 
outlined above can be repeated for the different symmetry elements to reduce the 
matrix to the maximum possible extent thereby minimizing the degrees of the result- 
ing factors of the characteristic polynomial of G. In the successive application of this 
procedure the sets of vertices remaining fixed under each of the symmetry operations 
used for the matrix reduction will be different. Therefore it will be necessary to 
transpose some of the rows and columns of the partially reduced matrix obtained 
after performing the complete two-step reduction procedure outlined above for two- 
and three-fold symmetry elements before proceeding with further matrix reduction 
using the next symmetry element. If done carefully, this constitutes a mere relabelling 
of the rows and columns of the partially reduced matrix without affecting the 
determinant and hence keeping unchanged the eigenvalues. The elements on the 
diagonal of the partially reduced matrix must remain on the diagonal on any such 
transposed matrix, i.e. rows and columns must be transposed equivalently. I f  this 
important precaution is not taken the procedures outlined above become invalid and 
meaningless. 

Procedures similar to those outlined above can be derived for four- and higher-fold 
symmetry elements. The procedures will work completely analogously for a graph 
with an automorphism group [1,9] of  sufficiently high order and appropriate 
structure that the alternating group An [10] can be a subgroup of the graph auto- 
morphism group. Thus the adjacency matrix of a cube can be reduced by first using 
a four-fold symmetry element corresponding to the alternating group A4, which is 
a subgroup of the Oh point group [ 11 ] of the cube. The details of the matrix 
reduction procedure using A4 rather than As (i.e. s 3 in the notation above) are 
completely analogous to those given above for the three-fold symmetry operation 
s 3 except in step 1 four rather than three columns corresponding to vertices in the 
same orbit are added together and in step 2 the row corresponding to the vertex 
whose column is the sum of the four columns of the vertices in the same orbit under 
A 4 is subtracted from three rather than two other rows of vertices in the same orbit 
under A4. However, very few of the planar graphs corresponding to three-dimensional 
polyhedra are of such high symmetry that An(n ~ 4) is a subgroup oi~ their auto- 
morphism groups. Therefore the details of using n-fold symmetry elements An(n >i 4) 
to reduce the adjacency matrixes of graphs corresponding to three-dimensional 
polyhedra are unimportant and will not be discussed further in this paper. 

Another type of n-fold symmetry element is the n-fold rotation axis Cn. For n :~ 3, 
Cn --/:An since Cn has n operations whereasAn has n!/2 operations. A matrix 
reduction procedure for an n-fold symmetry element Cn completely identical to 
that suggested above for An is completely valid in that such a reduction procedure 
constitutes a similarity transformation such that the eigenvalues of the reduced 
matrix A" will be the same as those of the original matrix A. However, the lower 
symmetry implied by C n relative to A n means that fewer of the submatrices in the 
reduced adjacency matrix will vanish making matrix reduction by a Cn less effective 
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at reducing the degrees of the factors of the characteristic polynomial than a matrix 
reduction by the corresponding A n .  Matrix reduction through an n-fold rotation 
axis Cn is used later in this paper to derive general expressions for the eigenvalues of 
prisms, pyramids, and bipyramids. This later discussion can therefore serve an an 
illustration on generalizing the matrix reduction procedure detailed above for two- 
and three-fold symmetry operations to higher n-fold symmetry operations, specifically 
n-fold rotation axes. 

3. A Graph Splitting Algorithm for Working the Above Matrix Procedure 

The matrix reduction procedure outlined above for the adjacency matrix of a graph 
containing one or more two- or three-fold symmetry elements can be translated 
directly into corresponding operations on the graph itself. The result of the operations 
on the graph is to transform a connected graph G with v vertices by splitting into a 
disconnected graph G" with c components such that the set of eigenvahies of all of  
the components of the disconnected graph G" is identical to the eigenvalues of the 
original connected graph G. However, determination of the eigenvalues of the dis- 
connected graph G" is considerably easier than the determination of the eigenvalues 
of the original connected graph G for the following reasons: 

1) The expansion of the determinant det ( M -  A) to determine the characteristic 
equation of a connected graph G with v vertices in terms of sesquivalent edge- 
subgraphs [1, 12] rapidly becomes more difficult and less reliable as the number 
of vertices in G is increased. If G is reduced to a disconnected graph G " ,  the 
characteristic equation of each component G}' of this disconnected graph with vi 

vertices (E~= lVi = v) can be determined individually by the sesquivalent edge- 
subgraph procedure thereby decreasing considerably the sizes of sesquivalent 
edge-subgraphs that must be considered. 

2) The degree of the equation that must be solved to determine the eigenvalues of 
the original connected graph G with v vertices is v whereas the degrees of the 
equations that must be solved to determine the eigenvalues of the corresponding 
disconnected graph G" are v l ,  �9 v c such that Z c � 9  i= 1 vi = v. It is less difficult to 
solve n different equations of degree m than to solve a single equation of degree 
m n .  Even a non-factorable cubic equation obtained as the characteristic equation 
of a three-vertex graph with unequal edge weights has no true algebraic solution 
[13] because of difficulties associated with the real cube roots of complex 
numbers with imaginary components. 

Details of the graph splitting algorithm for both two- and three-fold symmetry 
elements are given below: 

3.1.  T w o - F o l d  S y m m e t r y  E l e m e n t s  

Consider a connected graph G with v vertices containing a two-fold symmetry element 
s 2 fixing the p vertices z 1 . . . . .  , z p  and transforming the al . . . . .  aq vertices of G into 
the corresponding b 1 . . . .  , bq vertices; p + 2q = v, the number of vertices of G 
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Convert the connected graph G to a disconnected graph G * containing two com- 
ponents Gg and Gu. Gg and Gu are both directed graphs (digraphs) with the following 
characteristics: 

1) The edge weights are not necessarily unity as in a usual graph. 
2) The weight of the edge connecting any two vertices vx and Vy of either Gg or Gu 

is not necessarily equivalent in the two directions. 
3) Either Gg, Gu, or both can contain loops not necessarily of unit weight. Let 

w(a, b) be the weight of the edge connecting vertices a and b in G; when the 
edge (a, b) involved is clear from the discussion, w(a, b) will be abbreviated to w. 

The component Gg is the orbit graph of G relative to the symmetry operation s 2 and 
has p + q vertices corresponding to zl . . . . .  Zp and the identified pairs (al, bl) . . . . .  
(aq, bq). The edges of Gg arise from those of G as follows: 

(G1) An edge connecting z i and zj or a i and aj (and therefore bi and b i because of 
the presence of the symmetry element s2) in G will have the same weight inboth 
directions and the same weight in Gg as in G. 

(G2) Edges connecting zi with aj and bj of weight w in G will have weight 2w directed 
from z i towards (aj, b]) and weight w from (ajbj) towards z i in Gg where (aj, bj) 
is the vertex corresponding to the identified pair a i and bj. 

(G3) Edges connecting ai with bi of weight w in G will appear as a loop of weight w 
attached to the vertex (aj, bi) in Gg. 

(G4) Edges connecting ai with bj (i =/=j) of weight w in G will connect the vertices 
(ai, bi) and (aj, bj) in Gg with weight w in each direction. 

The adjacency matrix of Gg corresponds to the submatrix Ag in the matrix reduction 
procedure outlined above. 

The component Gu has q vertices corresponding to the identified pairs (al, b l ) , .  �9 
(act , bq). The vertices corresponding to zl . . . . .  Zp in G vanish in Gu. The edges in Gu 
arise from those of G as follows: 

(U1) Edges of the following types in G vanish completely in Gu : 
a) Edges connecting z i and zj in G; 
b) Edges connecting z i with aj and b i in G. 

(U2) Edges connecting a i and a/in G of weight w (and therefore also connecting bi 
and b i because of the presence of the symmetry element s2) will appear as 
edges between the vertices (a i, bi) and (a], b]) in Gu with weight w in each 
direction. 

(U3) Edges connecting a i with bi of weight w in G will appear as a loop of weight - w  
attached to the vertex (ai, bi) in Gu. 

(U4) Edges connecting a i with b](i 4=j) of weight w in G will connect the vertices 
(ai, bi) and (aj, bj) in Gu with weight - w  in each direction. 

The adjacency matrix of Gu corresponds to the submatrixAu in the matrix reduction 
procedure outlined above. 

The combined eigenvalues of the two components of G* (Gg and Gu) as defined above 
will be the eigenvalues of the original connected graph G since this graph reduction 
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procedure corresponds to the matrix reduction procedure outlined above. Thus the 
graphs Gg and Gu have the adjacency matrices Ag and A u ,  respectively; the combined 
eigenvalues of Ag and A u  are the same as those of A"; and the eigenvalues of  A" are 
the same as those of A, the adjacency matrix of G. 

3.2. Three-Fold S y m m e t r y  Operations 

Consider a connected graph G with v vertices z 1 . . . .  , Zp, a 1 . . . . .  ac t , b l  . . . . .  bq, 
cl, �9 �9 cq, p + 3q = v, and with a threelfold symmetry element s 3 (i.e. 3-fold rotation 
axis) such that s3(zi) = z i (i.e. s 3 Fixes all z i - each z i lies on the 3-fold rotation axis), 
s3(ai) = bi, and s~(ai) = e i for all i. 

Convert the connected graph G into a disconnected graph G* containing three com- 
ponents Ga, Ge, and G e of which the last two components G e are identical. Again 
G a and G e are digraphs similar to Gg and Gu for the analogous procedure involving 
two-fold symmetry elements discussed above. Again let w(x, y )  or more briefly w 
denote the weight of the edge connecting the vertices x and y in G. 

The component Ga is the orbit graph of G relative to s 3 and has p + q vertices corres- 
ponding to z 1 . . . . .  Zp and the identified triplets (al, bl,  el) . . . . .  (act, bq, Cq). The 
edges o f G  a arise from those of G as follows: 

(A 1) An edge connecting z i and z~ or a i and a] (and therefore b i and b] as well as ci 
and c] in the latter case because of the presence of the three-fold symmetry 
element s3) of weight w in G will have weight w in each direction in G a. 

(A2) Edges connecting zi with a], b], and c] in G each of weight w will have weight 
3w directed from z i towards (a], b], el) and weight w directed from (a], b], el) 
towards zi in Ga where (a/, hi, c]) is the vertex corresponding to the identified 
triplet aj, hi, and % 

(A3) The three edges of  a triangle aibici of weight w in G will appear as a loop of 
weight 2w attached to the vertex (ai, hi, ci) in Ga. 

(A4) Any edges connecting ai with hi, bi with c], or ci with a] (i ~ ]) of weight w in 
G will contribute weight w in each direction to the edge connecting the vertices 
(ai, hi, ci) and (a], hi, c]) in Ga. 

The adjacency matrix of G a corresponds to the submatrix Aa in the matrix reduction 
procedure outlined above. Furthermore, the process leading to Ga from G with a 
three-fold symmetry element is completely analogous to the process leading to Gg 
from G with a two-fold symmetry element discussed above. 

The two identical components Ge of the disconnected graph G* each have q vertices 
corresponding to the identified triplets (a l, b 1 ,  c 1 ) ,  �9 . - ,  (aq, bq, Cq). The p vertices 
corresponding to zl . . . .  , Zp in G vanish in Ge. The edges in Ge arise from those of G 
as follows: 

(El) Edges of the following types in G involving the vertices z i all vanish completely 
in G e : 
a) Edges connecting z i and z / i n  G; 
b) Edges connecting z i with a], hi, and c] in G. 



232 R.B. King 

(E2) Edges connecting a i and a i in G of weight w will contribute weight w in each 
direction to the edge between (ai, bi, el) and (a i, b i, cj) in G e . 

(E3) The three edges of a triangle aibic i of weight w in G will appear as a loop of 
weight - w  attached to the vertex (ai, bi, ci) in Ge. 

(E4) Any edges connecting a i with bj, bi with ei, or c i with aj (i 4=f) of weight w in 
G will contribute weight - w  in each direction to the edge connecting the 
vertices (ai, bi, ei) and (% b i, ci) in Ge. 

Existence of edges of G of both type E2 and type E4 of weight w between two orbits 
aibic i and aibic ] of G such as those found in a trigonal antiprism will lead to an edge 
with weight - w  in each direction between the identified vertices (ai, bi, el) and 
(ai, hi, c]) in Ge. The adjacency matrix of Ge corresponds to the submatrix Ae in the 
matrix reduction procedure outlined above. 

The combined eigenvalues of the three components of the disconnected graph G* 
(i.e. G a and two identical components Ge) as defined above will be the eigenvalues 
of the original connected graph G since this graph splitting process corresponds to the 
matrix reduction process outlined above. Thus the graphs G a and Ge have the 
adjacency matrices A a and Ae, respectively; the combined eigenvalues ofAa,  Ae, 
and Ae are the same as those of A"; and the eigenvalues of A" are the same as those 
of A, the adjacency matrix of G. Since two of the components of G* (i.e. Ge) are 
identical, the eigenvalues of G arising from G e will have a multiplicity of at least 2. 

If the graph to be split contains several two- and/or three-fold symmetry elements, 
the graph splitting algorithm given above can be repeated several times using the 
different symmetry elements to achieve maximum splitting to a disconnected graph 
G** with the maximum number of components. This minimizes the numbers of 
vertices in any individual components. This simplifies the calculation of the 
characteristic polynomials of each component by minimizing the numbers of 
vertices of the sesquivalent edge-subgraphs that have to be considered [I, 12]. Further- 
more, the maximum degree of the equations which must be solved to obtain the eigen- 
values of each individual component is minimized. If the symmetry elements of G are 
sufficient, it is useful to reduce G into a disconnected graph G** with individual 
components containing no more than two vertices apiece. The characteristic poly- 
nomials of each component are then very simple to calculate and the resulting 
quadratic equations are very simple to solve by standard methods. In any case, after 
all of the two- and three-fold symmetry elements of the original graph G have been 
used for successive applications of the graph splitting algorithms as outlined above, 
the characteristic polynomials for each component of the completely split graph G** 
can be computed by standard methods [ 1, 12] using the number of sesquivalent 
edge-subgraphs in each component to determine the coefficients of the correspond- 
ing characteristic polynomial. The extensions of these standard procedures of 
determining characteristic polynomials to the digraphs G** arising from the graph 
splitting algorithm which inevitably have non-unit and sometimes even negative edge 
weights as well as different weights of a given edge in opposite directions are trivial 
as well as apparent from the actual examples to follow. 
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4. Examples of the Graph Splitting Algorithm 

4.1. The Sq uare A ntiprism (Fig. 1) 

The square antiprism is an example of a graph where repeated application of the 

\ 

\ \  

>2"F 
2 O- CTu(~3)CTG (24) / (i 3)0"-U(24) 

x= - 2  

CTG ( 15 } O'-G (24) CTG (5678 } 

2 i t (~-z) 2 -4=o 
2 x=O or 4 

Fig. 1. Application of the graph splitting algorithm to the square antiprism 
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graph splitting algorithm using the different reflection planes for two-fold symmetry 
elements as depicted in Fig. 1 results in splitting into a disconnected graph with five 
components with only one or two vertices apiece and with eigenvalues corresponding 
to the eigenvalues of the original square antiprism. Determination of the eigenvalues 
of the square antiprism thus requires the calculation of characteristic polynomials of 
graphs with no more than two vertices and the solution of only very simple linear and 
quadratic equations. 

4.2. The 3,3-Bicapped Trigonal Prism (Fig. 2) 

The 3,3-bicapped trigonal prism is an example of a graph where it is advantageous to 
start with the three-fold axis in applying the graph splitting algorithm. The first step 
in the graph splitting algorithm leads to immediate splitting of the original connected 
graph with eight vertices into a disconnected graph with one component containing 
four vertices obtained through process CaA (18) and two identical components each 
containing two vertices each obtained through process C3E(18). The four vertex com- 
ponent can be split further by a second application of the graph splitting algorithm 
using the reflection plane. 

4.3. Other Graphs Corresponding to Polyhedra with Nine or Less Vertices (Table 1 
and Fig. 3) 

Table 1 summarizes further examples of applications of the graph splitting algorithm 
to graphs corresponding to polyhedra with nine or less vertices as depicted in Fig. 3, 
which gives details of the vertex numbering schemes used for each polyhedron. Each 
graph is classified according to the numbers of vertices (v), edges (e), and faces (f) 
of the corresponding polyhedron. The symmetry properties of each polyhedron are 
classified by the symmetry point group (Schoenflies notation [11 ] ) and the number 
of orbits corresponding to the vertices and edges. Further properties of these polyhedra 
are described in more detail in other papers [2-6]. 

Possible and effective symmetry element sequences for application of the graph split- 
ting algorithm to the polyhedra in Table 1 are listed there according to the following 
conventions: 

a) The symbols o, C2, and C3 refer to reflection planes, two-fold rotation axes, and 
three-fold rotation axes, respectively. 

b) The vertices remaining fixed under a particular symmetry operation (o, 6"2, or C3) 
are listed in the set of parentheses to the right of the corresponding symmetry 
element designation using the vertex numbering schemes in Fig. 3. If no numbers 
appear in parentheses after a particular symmetry element, then no vertices remain 
fixed under the corresponding symmetry operation. 

c) The sequence of using the symmetry elements is from left to right. 

From Table 1 and Fig. 3 it is possible to derive figures representing application of the 
graph splitting algorithm similar to Figs. I and 2 for the square antiprism and 3,3- 
bicapped trigonal prism, respectively. 
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q 

(x+l)2-1 =0 
(~  ~ ~,,,~,.~q x(x +2)=0 

C' x=O o r - 2  
"~9 (multiplicity 2) 

x (x - I ) -  3=0 
C3A(18)% x2-x -3 = 0 

x =1+ %/~ _ 

2 

x(x-3)-3=O 
x2-3x -3=O 
x = 3 +_ ~v/- ~ 

2 

Fig. 2. Application of the graph splitting algorithm to the 3,3-bicapped trigonal prism illustrating 
the use of a three-fold rotation axis 

The results of  the graph splitting algorithm can be checked by using the relationships 

Z~=I X i = 0 and ZY=IX 2 = 2e [I] where Xi (i = 1 , . . . ,  v) represents the eigenvalues 
obtained by solving the factored characteristic polynomial in descending order 
provided that an eigenvalue of  non-unit multiplicity m is counted rn times (i.e. 

�9 . 13 3 

kj = Xj+ll = . . .  = ;~i+ m -1  in the above relationships). The relationship Ei= 1 k i =  6c3 
also appears to hold where e 3 is the number of  circuits of  the graph with length 3. In 
using this last relationship it must be recognized that not all circuits of  a graph of  
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length 3 may correspond to triangular faces of the corresponding polyhedron. For 
example, the trigonal bipyramid (polyhedron 3 in Fig. 3) has six triangular faces but 
the corresponding graph has seven circuits of length 3. The "extra" circuit of length 3 
in the graph of the trigonal bipyramid which does not correspond to a polyhedral face 
is the one connecting the equatorial vertices (2, 3, and 4 in Fig. 3). Similar relations 
of the type Y~= 1X n = xy (x= integer, y = the number of some type of circuit, etc.) 
for n > 3 are more complex and less useful since, for example, both the circuit 
graph C4 (quadrilateral) and the four-vertex graph having two disjoint edges are 
sesquivalent graphs with four vertices. 

5. Eigenvalues of Some Generalized Families of Polyhedra with Two Edge Orbits 

All of the previous calculations of the characteristic polynomials of graphs corres- 
ponding to polyhedra assume that all edges of the original polyhedron, and therefore 
of the corresponding graph, are of unit weight even if they are in different orbits 
where equal edge weights are not demanded by the symmetry properties. This 
section considers a different type of eigenvalue calculation of families of polyhedra 
with two edge orbits where the relative weights of the edges in the two different 
edge orbits are continuously varied. Such calculations are potentially useful in 
chemical problems for evaluating the effects of distortions of an array of atoms on the 
energy levels of the system. 

The families of polyhedra with two edge orbits considered here are the prisms, 
pyramids, and bipyramids. In each of these families one type of edge connects 
vertices to form polygons corresponding to the highest order rotation axis. This 
first type of edge will be given unit weight. The second type of edge either connects 
the corresponding vertices of two identical polygons in the case of the prisms or the 
vertices of a polygon to one or two external points in the cases of the pyramids and 
bipyramids, respectively. This second type of edge will be given weight w. This 
method of designating the edge weights of polyhedra with two edge orbits provides 
information on the completely general case, since if the edges of the polyhedron of 
the first type do not have unit weight but instead weight ~X (x :~ 1) and the edges of 
the second type have weight y, then set w = y/x and multiply the resulting eigenvalues 
by x. 

5. J. Prisms 

A prism Tn consists of two identical and parallel polygons C n with additional edges 
connecting corresponding vertices in each polygon. Each vertex is of valency 3. There 
are a total of 3n edges in the foltowingtwo edge orbits: 1) 2n equivalent intrapoly- 
gonal edges within each Cn polygon; 2) n equivalent interpolygonal edges connecting 
equivalent vertices of each polygon. Give the 2n intrapolygonal edges weight 1 and 
the n interpolygonal edges weight w. Then the adjacency matrix of Tn has the form 

1 
Win Cn / 
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where Cn is the adjacency matrix of the polygon Cn and In is the n x n matrix with 
+l's on the diagonal and zeroes elsewhere. Reduce this matrix through the reflection 
plane of the prism which bisects the interpolygonal edges using the procedure out- 
lined earlier in this paper noting that corresponding vertices of the two equivalent 
Cn polygons are in the same orbit under this reflection plane. This matrix reduction 
proceeds as follows: 

\ Cn + wIn Cn I Cn - wIn 

The eigenvalues of the resulting matrix A" are E(Cn) + w and E(Cn) - w where E(Cn) 
are the eigenvalues of the adjacency matrix of Cn. In other words the eigenvalues of a 
prism are obtained by subtracting and adding the weight of the interpolygonal edges 
to the eigenvalues of the identical and parallel C n polygons forming the upper and 
lower faces. 

5.2. Standard Reduction of the Adjacency Matrix Cn 

Before considering the eigenvalues of pyramids and bipyramids it is first necessary to 
develop a standard reduction of the adjacency matrix of a regular polygon Cn with n 
sides. This procedure uses the symmetry of the n-fold rotation axis of Cn to reduce 
its adjacency matrix Cn by the following two-step process corresponding completely 
to the matrix reduction procedure outlined earlier in this paper. 

a) Add columns 2, 3 . . . . .  n to column 1. This will give each entry in column 1 the 
value +2 since each vertex in a regular polygon is connected to exactly two other 
vertices. 

b) Subtract row 1 from each of the rows 2, 3 . . . .  , n to give a matrix Mn of the form 

(~ immaterial/ 

u. ]. 

The first step above consists of right multiplying Cn by a unit lower triangular matrix P 
with +l's on the main diagonal, +1 's in the first column, and zeroes elsewhere. The 
second step above consists of left multiplication by another unit lower triangular 
matrix Q with +l's on the main diagonal, - l ' s  in the non-diagonal first column 
positions, and zeroes elsewhere. As in the case of the adjacency matrix reduction 
procedure for graphs with two- and three-fold symmetry elements discussed earlier in 
this paper, PQ = I and therefore Q = p-a. The two-step procedure given above is 
therefore a similarity transformation and the eigenvalues of Mn are thus the same as 
those of Cn. The eigenvalues of Un designated as E(Un) are the same as those of Cn 
except for deletion of +2. 

This generalized method for reducing the adjacency matrix Cn will be used when 
studying the eigenvalues of pyramids and bipyramids and will be called the standard 
reduction of Cn. 



Characteristic Equations of Graphs Corresponding to Polyhedra 241 

5.3. Pyramids 

A pyramid Wn (also known as a wheel) is the cone [1] of a regular polygon Cn where 
each vertex of the polygon C n is connected by an additional edge to an external point 
called the apex. The polygonal vertices each have valency 3 whereas the apex has 
valency n. The pyramid W n has a total of 2n edges in the following two edge orbits: 
1) n equivalent intrapolygonal edges within the basal polygon; 2) n equivalent apical 
edges connecting the apex with each vertex of the basal polygon. Give the n intra- 
polygonal edges weight 1 and the n apical edges weight w. The adjacency matrix of 
Wn has the following general form if the first row and column correspond to the 
apex and if in is the 1 x n column vector or the n x 1 row vector with all entries +1: 

0 

Apply the standard reduction discussed above to Cn except during the second step 
include the first column corresponding to the apex in the usual row subtraction 
process. This gives 

0 un 

where the ? entries are immaterial. Note that this matrix factors into a 2 x 2 matrix 
and the matrix Un identical to that obtained in the standard reduction of Cn discussed 
above. 

The eigenvalues of the 2 x 2 matrix are 1 -+ x/l' + nw 2 whereas the eigenvalues of Un 
are those of Cn with deletion of +2. Thus the addition of an apex to a polygon C n to 
form the corresponding pyramid Wn splits the +2 eigenvalue of Cn into two eigen- 
values centered at +1 with their separation increasing with increasing weight of the 
apical edges but leaves unaffected the remaining eigenvalues of the polygon C n. 

5.4. Bipyramids 

A bipyramid 1-1 n is the suspension of a regular polygon Cn where each vertex of the 
equatorial polygon Cn is connected by additional edges to each of two external points 
called the apices. The polygonal vertices have valency 4 whereas the apices have 
valency n. There are a total of 3n edges in the following two-edge orbits: 1) n equivalent 
intrapolygonal edges within the equatorial polygon; 2) 2n equivalent apical edges con- 
necting each apex with each vertex of the equatorial polygon. Give the n intrapolygonal 
edges weight 1 and the 2n apical edges weight w. The adjacency rriatrix of Fin has the 
following form if the two last rows and columns correspond to the apices: 

win 0 

win 0 . 
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Reduce this matrix through the reflection plane containing all of  the vertices of  the 
equatorial polygon using the procedure outlined earlier in this paper. This reduction 
proceeds as follows: 

A '  = Win 0 A " =  0 

w/, 0 0 

The eigenvalues are therefore 0 and the n + 1 eigenvalues of  an (n + 1) x (n + 1) matrix 
which will be reduced further. 

Before proceeding with this further reduction o f A "  relabel and rearrange the rows and 
columns of  this (n + 1) x (n + 1) matrix to make the last row and column (arising 
from the apices) the first row and column giving 

(0 w,. / 
2Win Cn /. 

Note that this process preserves the diagonal elements. 

Next apply the standard reduction to Cn discussed above except during the second 
step include in the subtraction process the first column originating from the apices. 
This gives 

( ~ 
2w 

0 

nw!) 
2 

0 

where the ? entries are immaterial. Note that this matrix factors into a 2 x 2 matrix 
and the matrix Un identical to that obtained in the standard factoring of  Cn discussed 
above. The eigenvalues of  the 2 x 2 matrix are 1 -+ x / l +  2 nw2 whereas the eigenvalues 
of  Un are those of  Cn with detetion of  +2. Thus the addition of  two apices to a 
regular polygon Cn to form the corresponding bipyramid leads to a new zero eigen- 
value and splits the +2 eigenvalue into two eigenvalues centered at +1 but leaves un- 
affected the remaining eigenvalues of  the basal polygon. 
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